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Abstract  

In this research paper we try to find out and investigate the “Fast Fourier Transform model and G-CSF Treatment of CN 

(Cyclical Neutropenia)”, in detail. In this analysis of G-CSF treatment of ‘Neutropenia’, we get ‘data’ from CN. They are grey 

collies. They are usually used to build an extended model of it. It produces the dynamics of circulating blood cells. They are 

found from the dogs with and without daily G-CSF therapy. It is a model which is very useful for collection of laboratory data. 

This mathematical model helps us to reproduce the large variation of data too. They occur from one dog to another. It has long 

term effects on the oscillations when the frequency of drug delivery is made. This model is also useful to account for the features 

of untreated G-CSF. It is also useful for treatment of dogs with CN. Therefore this model is considered as an accomplished one. 

There is fitting parameters for 3 days and not for 4 dogs for estimation or evaluation. It is also essential and necessary to model 

the more samples for increase in Neutrophil amplification. The proposed interventions are practical. It may reduce the amount 

of G-CSF. It required potential maintenance. Sometimes, it may even improve the treatment effects too. This model gives us 

good result in treatment. The changes would be practical and reduce the risk side as well as the cost of treatment in G-CSF. 
 

Key Words: FFT modeling, neutrophil, granulocyte
 
colony-stimulating factor (G-CSF). 

 

Introduction  

All blood cells are derived from the hematopoietic stem cells 

(HSC), which are undifferentiated cells having a high 

proliferative potential
1.
 These multipotent stem cells can 

proliferate and mature to form all types of blood cells. 

Production in these cell lines is regulated by a variety of 

cytokines, including erythropoietin (EPO), which mediates the 

regulation of erythrocyte production, thrombopoietin (TPO), 

which regulates production of platelets, as well as granulocyte 

colony-stimulating factor (G-CSF), which regulates leukocyte 

numbers
2. 

 

In a comprehensive mathematical model for the regulation of 

hematopoiesis was presented. This work was motivated by the 

existence of several hematological diseases that display a highly 

dynamic nature characterized by oscillations in one or more of 

the circulating cell lines. Examples of these are cyclical 

neutropenia, periodic chronic myelogenous leukemia, cyclical 

thrombocytopenia and periodic hemolytic anemia. In this 

chapter, we concentrate on cyclical neutropenia, a rare 

hematological disorder characterized by oscillations in the 

circulating neutrophil count. These levels fall from normal to 

barely detectable levels with a typical period of 19 to 21 days in 

humans, even though periods up to 40 days have been observed. 

These oscillations in the neutrophil count are generally 

accompanied by oscillations with similar period in the platelets, 

lymphocytes and reticulocytes. Cyclical neutropenia also occurs 

in grey collies with periods on the order of 11 to 16 days. This 

animal model has provided extensive experimental data that has 

enriched our understanding of cyclical neutropenia
3.

 

 

Though the gene modified responsible for canine cyclical 

neutropenia has been identified, the dynamic origin of the 

cycling is only partially understood. Because of its interesting 

dynamical nature, many mathematical models have been 

formulated to attempt to answer this question. While many have 

modeled cyclical neutropenia as arising only from 

destabilization of neutrophil dynamics, the work of  FFT and  

suggest that the origin of cyclical neutropenia lies in a 

destabilization of the combined HSC and neutrophil control 

system. The hypothesis that oscillations originate in the stem 

cells is supported by the observation that in cyclical neutropenia 

oscillations are also present in platelets and reticulocytes. 

Cyclical neutropenia in humans is often treated using 

granulocyte colony stimulating factor (G-CSF), which is known 

to interfere with apoptosis
4. 

 

In the authors showed that, depending on the starting date of the 

G-CSF treatment, the neutrophil count could either be stabilized 

or show large amplitude oscillations. Their model suggested that 

other G-CSF treatment schemes could be effective while using 

less G-CSF. However, this model included neither erythrocyte 

nor platelet dynamics even though clinical data indicates 

oscillations in those cell lines in cyclical neutropenia patients. 

Thus it is not known if the results would be consistent with 

observed platelet and reticulocyte data. Second, the simulations 

did not take into account the pharmacokinetics of G-CSF. In this 

chapter, we present a new model for assessing the effects of G-

CSF treatment in cyclical neutropenia. To do this, we augment 

the comprehensive model of the hematopoietic system from by 
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coupling it with a two-compartment pharmacokinetic model that 

accounts for G-CSF kinetics
5. 

 

Material and Methods 

Periodic Auto-Immune Hemolytic Anemia: Let p (t, α, β) be 

the population of precursor cells at time t, age α and rate of 

production β. let   V(R) and U(R) be the velocities of rate of 

production and maturation, which may depend on the hormone 

(EPO) concentration. If N (R) is the number of cells recruited 

into the reproduce precursor population, and then the entry of 

new precursor cells into the structured model will satisfy the 

boundary condition,  

( ( ) ( )) ( , , ) ( ) (1)V R U R p t N R       

  and boundary condition rate cells exchange 

( ( ) ( )) ( , , ) ( , , ) (2)V R U R p t Em t                          

Let the birth rate for reproducing precursor cells be β and α 

represent the death rate through apoptosis. Let         be the 

density of the distribution of maturity levels of the cells when 

released into the circulation blood, where    represents the mean 

age of mature precursor cells  

1

0

( ) 1D d



   
  and 2

0

( ) 1D d



   
 

The disappearance rate function is given by:

1 2

( )
( ) (3)

( ) ( )

D
D

D x dx D x dx

 

 

 


 


 

   

  

With these condition the age structured model for the population 

of precursor cells with t > 0, 

0 < μ < μ1 and 0 < μ < μ2 satisfies: 

1 2

( ) ( ) ( ( ) ( ))[ ( ,

) ( , ) ( ) ] (4)

p p p
V R U R V R U R

t

R p R p D p

  
 

  

  

   

  

 

let m (t, α, 0) be the population of mature non – reproducing 

cells at r and age α. From the disappearance rate function, the 

boundary condition for cells entering the mature population is 

given by 
1

2

0

0

( , ,0) ( ) ( ) ( , )

( ) ( ) ( , ) , (5)

Em t V R D p t d

U R D p t d





    

   

  

 





where the maturity 

levels μ1 and μ2 represents the maximum age for a cell reaching 

maturity. We assumed that destruction of RBC occurs by active 

removal of the old cells
6.
 Form a modeling point of view, this 

results in a moving boundary condition with the age of the 

oldest RBC, ϴ(t) varying in t. The boundary condition is then 

given by 

( ) ( , ( )) (6)E m t t F
t





    

where F is the fixed RBC removal rate. If γ(ϴ) is the death rate 

of mature cells , then the partial differential equation describing 

m (t,ϴ)is given by: 

( ) , 0, 0, (7)
m m

E E m t
t

 
  

 
     

The total population of mature cells function is given by:  

( )

0

( ) ( , ) . (8)

t

M t m t d



    

The differential equation for R (red blood cells production) is 

thus: 

, (9)
1 r

dR
kR

dt KM


  

  
Where k is the decay constant for the hormone and the rate of 

production β is given by a monotone decreasing Hill function. 

The given equation is linear in R. 

(10)
1 r

dR
kR

dt KM


  


 

IF (integrating factor) =       =     

1

Re e e
1 (1 )

(11)
(1 )

KT KT KT

r r

r

dt C C
KM KM K

R C
KM K

 



   
 

  


  

 

Cyclical Thrombocytopenia: Platelets are blood cells whose 

function is to take part in the clotting process, and 

thrombocytopenia denotes a reduced platelet (thrombocyte) 

count. In cyclical thrombocytopenia (CT), platelet counts 

oscillate generally from very low values (1 × 109 cells/L) to 

normal (150 − 450 × 109 platelets/L) or above normal levels 

(2000 × 109 cells/L). These oscillations have been observed 

with periods varying between 20 and 40 days. In addition, 

patients may exhibit a variety of clinical symptoms indicative of 

impaired coagulation such as purpura, petechiae, epistaxis, 

gingival bleeding, menorrhagia, easy bruising, possibly 

premenstrually, and gastrointestinal bleeding. There are two 

proposed origins of cyclical thrombocytopenia. One is of auto-

immune origin and most prevalent in females. The other is of 

amegakaryocytic origin, more common in males. 

 

Autoimmune cyclical thrombocytopenia is characterized by a 

shortened platelet lifespan at the time of decreasing platelet 

counts. This is consistent with normal to high levels of bone 

marrow megakaryocytes and with an increased destruction rate 

of circulating platelets. Autoimmune CT has also been 

postulated to be a rare form of idiopathic (immune) 

thrombocytopenic purpura (ITP). 

 

Cyclical Neutropenia:  We presented a two variable delay 

differential equation (DDE) system that has negative feedback 

loops in both the peripheral loop and the stem cell loop and 

illustrates the four compartments of the model: the 

hematopoietic stem cell (HSC) compartment (S), the neutrophil 

compartment (N), the erythrocyte compartment (R) and the 

platelets compartment (P). The HSCs are assumed to be self-

renewing, and thus cells in the resting (S0) phase can either enter 

the proliferative phase at rate K (S) or differentiate into 

neutrophils (N) at rate F(N). As the neutrophil precursors 

differentiate, their numbers are amplified by a factor A, which 

accounts for both successive divisions and cell loss due to 
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apoptosis. It is also assumed that apoptosis occurs during the 

proliferative phase at rate γ and that mature neutrophils die at 

rate α. As can be seen in figure 1, the system is controlled by 

four negative feedback loops. The first one regulates the rate K 

(S) of reentry of HSCs to the proliferative cycle, and it operates 

with a delay τ that accounts for the time required to produce two 

daughter cells from one mother cell.  

( ) (12)

( ) (13)

( ) (14)

dN
N AF N S

dt

dR
R AF R S

dt

dP
P AF P S

dt







     

     

     

 

The equations for the two variables N, R, P and S can be 

derived from a time­ age maturation formulation, or written 

directly from consulting figure 1. For the compartment N, the 

loss is the efflux to death N and the production of mature 

neutrophils is equal to the influx F (N) S from the HSC 

compartment times the amplification A.  Since one needs to take 

into account the transit time τ, the total production of mature 

neutrophils are  AF(N (t - τ ))S(t - τ), AF(R (t - τ ))S(t - τ) and  

AF(P (t - τ ))S(t - τ) or equivalently   AF(N )S, AF(R)S and 

AF(P)S (recall that N = N (t - τ ), R = R (t - τ ) and P = P (t - τ 

)). For the second variable, the loss from the compartment S is 

the flux reentering the proliferative phase, K (S)S, plus the 

efflux going into differentiation, F(N )S. The production of S is 

equal to the flux of cells reentering and surviving the 

proliferative phase, given by K (S)S     , times the cell division 

factor 4. The dynamics of S is then described by   

( ) ( ) 4 ( ) (15)

( ) ( ) 4 ( ) (16)

( ) ( ) 4 ( ) (17)

dS
F N S K S S K S Se

dt

dS
F R S K S S K S Se

dt

dS
F P S K S S K S Se

dt













    

    

    
 

The feedback functions F and K are monotone decreasing Hill 

functions. F controls the number of compartments while K(S) 

regulates the level of HSCs.  

1
0
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1
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0

1

4
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4
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( ) (21)
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F N f
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S

















   


   


   


   


 

It developed a comprehensive model that contains four 

compartments: the HSC (Q), the neutrophils (N), the 

erythrocytes (R) and the platelets (P). This model combines a 

number of compartmental models. The stem cell and neutrophil 

dynamics are based on the model and the erythrocyte and 

platelet compartment are simplified models. The circulating 

cells are coupled to each other via their common origin in stem 

cell compartment. Regulatory negative feedback loops 

determine how much differentiation from the stem cells each 

cell line will undergo. Since it takes several days to produce a 

mature cell from a newly differentiated cell, time delays appear 

in the equations.
 
The model consists of a set of four coupled 

delay differential equations.   

( ) 4 (22)

( ) (23)

{ ( ) ( ) } (24)

{ ( ) ( ) }

N R P

dQ
Q K K K Q e Q

dt

dN
N AK N Q

dt

dR
R A K R Q e K R Q

dt

dP
P A K P Q e K P Q

dt







 



 

 







        

     

       

    

 

 

Periodic Chronic Myelogenous Leukemia: Leukemia is a 

cancer of the blood or bone marrow characterized by an 

abnormal proliferation of blood cells, usually leucocytes. 

Chronic myelogenous leukemia (CML) is distinguished from 

other leukemias by the presence of a genetic abnormality in 

blood cells, called the Philadelphia chromosome, which is a 

translocation between chromosomes 9 and 22 that leads to the 

formation of the BcrAbl fusion protein. This protein is thought 

to be responsible for the dysfunctional regulation of myelocyte 

growth and other features of CML.  

 

DDE Models: Delay-differential equations (DDEs) are a large 

and important class of dynamical systems. They often arise in 

biological systems where time lags naturally occur. In 

particular, in hematology several processes are controlled 

through feedback loops and these feedbacks are generally 

operative only after a certain time, thus introducing a delay in 

the system feedback. The general form of a DDE for x(t)   R
n
 is 

 

( , ( ), ) (25)
dx

f t x t x
dt

   

where x  is the delayed variable (x(t −   )) and f is a functional 

operator in R × R
n
 × C

1
.  

 

DDE with Constant Delays: Delay differential equations with 

constant delays take the form 

1 2( ( ), ( ), ( ),..., ( )),n

dx
f x t x t x t x t

dt
       

where the quantities  i, i = 1, 2, ..n are positive constants. For 

simplicity, consider the DDE with a single constant delay: 

( ( ), ( )) (26)
dx

f x t x t
dt

    

To obtain a solution of equation (26) for t > 0, one needs to 

specify a history function on [− , 0]. Indeed, recall that for an 

ordinary differential equation (ODE) system with n variables, 

one would only need to specify the initial values x(0) for each of 

the n state variables. In order to solve a DDE, one needs to 

specify not only the value at t = 0, but also all the past values of 

x(t) over the interval [− , 0]. For example, let X(t) represent the 

circulating cell population of a certain type of blood cell, 

assume that    is the random rate of loss of cells in the 

circulation and F is the flux of cells from the previous 
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compartment. Then, the dynamics of the number of circulating 

cells will have the generic form 

( ( ))
dx

X F X t
dt

      

DDE with Distributed Delays: A distribution of delays is then 

be more appropriate and the DDE becomes an integro-

differential equation of the form 

( ( ), ( ) ( ) ) (27)

t
dx

f x t x G t d
dt

  


    

The density G(u) of the distribution function is referred to as he 

memory function or the kernel and is normalized, i.e. 

0

( ) 1G u du




   

This type of model can also be interpreted as allowing for a 

stochastic element in the duration of the delay. Also, we will see 

that for some densities G(u), equation (27) can be  equivalently 

viewed as a system of ordinary differential equations
7.

 

 

ODE Models: Delay differential equations naturally arise in 

modeling biological systems. Consider the following DDE 

system with a distributed delay: 

1
1 1( ( ), ( ) ( ) ), (28)

t
dx

f x t x G t d
dt

  


  
 

with the special choice of the density of the gamma distribution 

for the memory function 
1

( ) ( ) ,
!

p p
p au

a

a u
G u G u e

p


 

 

where a is a positive number and p is a positive integer or zero. 

Note that the function G(u) has a maximum at u = p/a and that, 

as a and p increase, keeping p/a fixed, the kernel approaches a 

delta function and the distributed delay approaches the discrete 

time delay with   = p/a. Moreover, it is clear that the following 

three properties are satisfied: 
0lim ( ) 0, (0) 0 0, (0)p p

a a a
u

G u G p G a


      

The central idea of the method is to replace the distributed delay 

by an extension of the set of variables. Define p + 1 new 

variable as 

1

1 1

2 1

( ) ( ) , 1,2,..., 1

( ) ( ) ,

t

j

j a

t

p

x x G t d j p

x x G t d

  
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









   

 





 

Then, using the properties of G one can show that these new 

variables satisfy a sequence of linear ODEs Solving the 

following system is thus equivalent to solving the DDE problem 

(28), given that the new variables are given appropriate initial 

values: 

1
1 2

1

1

2

1 2

( , )

( ), 1,2,..., 1

( )

p

j

j j

p

p p

dx
f x x

dt

dx
a x x j p

dt

dx
a x x

dt









 



   

 

 

The linear chain trick could be useful for numerical 

computations since it reduces the problem to an ODE system, 

for which several numerical methods are available. However, 

this method cannot be used for all sorts of delays
8. 

 

 

Age-Structured Models: Let x(t, a) be the cell density at time t 

and age a in a generic compartment. We assume that cells 

disappear (die) at a rate (t). We also assume that the cells in the 

compartment age with a velocity V (t) and that a cell enters a 

compartment at age a = 0 and exits this compartment at age a = 

 . Therefore, the equation satisfied by x(t, a) is an time-age 

equation (advection, or reaction-convection, equation): 

( ) ( ) , 0, [0, ],
x x

V t t x t a
t a

 
 

    
 

 

The right hand side in this equation represents the rate at which 

cells in the age interval a to a +  a disappear at time t. To 

represent the manner in which new cells enter the compartment, 

we define the boundary condition (B.C.) x(t, 0) = H(t). Finally, 

to fully represent the problem, we specify the initial condition 

(I.C.) x(0, a) =  (a). Using the method of characteristics, we 

obtain the following delay differential equation: 

0

( )[ ( ) ( )

exp( ( ) )] ( ) ( ), (29)

T

dx
V t H t H t T

dt

w dw t X t




 

  

 

 

where X(t) is the total number of cells    

0

( ) ( , )X t x t a da



   and T  satisfies   

( )

t

t T

V w dw






  . Note that if   is a constant, equation (29) 

reduces to 

( )[ ( ) ( ) ] ( ) ( ),
Tdx

V t H t H t T e t X t
dt



 
     

In addition, if the aging velocity is constant (V (t) = V ), we 

have that T  satisfies 
t

t T

Vdw






   =VT  

which implies that T   =  /V . Hence, if   and V are constant, 

we obtain a delay differential equation with constant delay: 

/
( )[ ( ) ( / ) ] ( ) ( ),

T Vdx
V t H t H t V e t X t

dt
 

     

 

Model Composition: The model has several negative feedback 

functions that regulate stem cell proliferation and differentiation 

into the three circulating cell types. In this model, as in the one 

presented, these are given by: 

2
0

2

( )
s

s s
Q k

Q








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1
0

1

( )
n

N n n
k N f

N







 

( )
1

p

p r

p

k
k P

K P



  

( )
1

r
R m

r

k
k R

K R



 

We must also specify an input function I(t) that represents the 

subcutaneous G-CSF injections. We assume that this input is 

brief in duration, and that the total amount of G-CSF added 

corresponds to the desired dosage, namely: 

( )I t dt dosage





  

 

Note that if   is small, a Gaussian-like input approximates a 

Dirac  -function, and we can write 

2 2/tae dt a  







 

 
Therefore to simulate periodic injections, we let 

2 2(( mod ) ) /
2( ) ( )
T

t T

I t H t d ae
 

    

where H (t) denotes the Heaviside step function 
( ) 0, 0

( ) 1, 0

H t t

H t t

 

 
 

 

The day on which treatment is initiated is denoted by d, and the 

Heaviside function simply turns the injections on. The term ‘‘t 

mod T’’ ensures periodicity, and we require that T    so that 

the approximation to the integral remains valid. Finally, we 

ensure that holds by choosing the parameter a a    = dosage
9.
 

It remains only to describe how the G-CSF acts on the 

hematological portion of the model.
 
Because we believe from 

previous modeling efforts that AN,  S, and  1 are the parameters 

that need to change under G-CSF, we model G-CSF injections 

as causing fluctuations in these three parameters:  

(1 ( )) ( )(( ( )) )u t

N N A NA A H t d H t d m G G A      
 

(1 ( )) ( )(( ( )) )u t

s s g sH t d H t d m G G        
 

1 1 1(1 ( )) ( )(( ( )) )u t

tH t d H t d m G G          

 

The superscripts ‘‘t’’ and ‘‘u’’ respectively indicate values 

corresponding to values that, in the model without the dynamics 

of G-CSF, match treated and untreated data respectively. The 

parameters mA, mg, and mt are slopes that specify how much AN, 

 S, and  1 change in response to a given change in G-CSF 

concentration, G.    is the average G-CSF concentration for each 

data set. These were computed using the G-CSF model alone, 

and using the average neutrophil levels in each data set. 

 

Results and Discussion 

In each case, we found that the neutrophil amplification 

increases substantially under G-CSF treatment, as does the rate 

of stem cell apoptosis, and the differentiation into the neutrophil 

line
10. 

We therefore predict similar changes for the remaining 

dogs there is some redundancy in the model, in that increasing 

the neutrophil amplification and the differentiation into the 

neutrophil line from the stem cells has similar effects. This is 

not unexpected, since the primary effect of both changes is to 

raise neutrophil levels. Figure 2. shows the fit of the untreated 

and treated data for dogs 100, 118 and 127. Note that the 

analysis matches the data reasonably well for the neutrophils as 

well as for the erythrocytes and platelets. This confirms that the 

new model, with the G-CSF coupled to the cell population 

dynamics, is capable of reproducing the data. The least squares 

differences between the simulations and the data were not 

significantly less than the values reported. These simulations 

and data are for daily treatment. Figure 2 shows the data and 

analysis for the other four dogs (dogs 101, 113, 117 and 128), 

again with daily treatment. Recall that these were the estimated, 

not fitted, values for the treated parameters and note the quality 

of the fits. Thus, we are able to match observed data without 

automated parameter fitting based simply on an examination of 

the treated data and the parameter changes for dogs 100, 118 

and 127. For each dog, we performed simulations comparing 

daily treatment, treatment every other day, and every three days. 

We find that particularly for dogs 100, 101, 118 and 127, 

changing the period of the treatment can significantly affect the 

nature of the oscillations. It shows the results of treating dog 

118 every other day, rather than every day. We have also 

explored the effects of changing the time at which the treatment 

is initiated. In most cases, this did not significantly change the 

long-term behavior. However, for dog 127 the amplitude of the 

oscillations was significantly reduced when the treatment was 

initiated in the latter half of the cycle. More specifically, 

measured from day 1, we find that smaller oscillations occur if 

treatment is initiated on day 8 or afterwards, or on days 2 or 5 

(see figure 2). When treatment was initiated on other days, 

larger oscillations in the model resulted. We were aware from 

our previous study of similar models that there is the possibility 

that two or more qualitatively different states can be locally 

stable, and we have also found evidence for this in the present 

model. Namely, changing the treatment onset time from day 1 to 

day 8 for dog 127 caused the simulation to stabilize to two very 

different types of behavior. It should also be noted that 

increasing the G-CSF dosage in the model sometimes helped to 

stabilize oscillations (dog 127), but in several cases (dogs 100, 

128 and 101) a dosage increase from 5 μg/kg to a dosage in the 

range 15-25 μg/kg caused some simulations to fail. In that 

analysis, the differentiation rate out of the stem cells was so 

high, and the apoptosis rate in the stem cells was so high, that 

the stem cell population was no longer able to maintain itself. 

For the other dogs, there was always a dosage that was 

sufficiently high to terminate the FFT analyze, but it was 

sometimes a factor of 10 higher than the actual dosage given. 
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Figure 2 Continuous neutrophil data and analyze for dogs 100, 

118, 127, 101, 113, 117 and 128.  The left figure shows 

untreated data (red) and fit (normal area). The right figure 

shows treated data (green) and analyze for dogs under daily G-

CSF treatment. Note that the model accounts for the different 

scaling in neutrophil counts. The calculations were obtained 

using parameters resulting from the FFT analysis method. 

Neutrophil units are 108 cells-kg−1 

 

 

 

 
 

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.0

0.5

1.0

1.5

2.0

time (days)

N
e

u
tr

o
p

h
il(

D
o

g
 1

0
0

)

-800
-600
-400
-200

0

0.00 0.01 0.02 0.03 0.04 0.05 0.06

untreated (dog 100)

A
n

g
le

(d
e

g
)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0

1

2

3

4

time (days)

N
e

u
tr

o
p

h
il
 (

D
o
g

 1
0

0
)

-800
-600
-400
-200

0
200

0.00 0.01 0.02 0.03 0.04 0.05 0.06

treated (dog 100)

A
n
g

le
(d

e
g

)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0

1

2

3

time (days)

N
e

u
tr

o
p

h
il(

D
o

g
 1

1
8

)

-600

-400

-200

0

0.00 0.01 0.02 0.03 0.04 0.05 0.06

untreated (dog 118)

A
n
g

le
(d

e
g

)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0

1

2

3

4

5

time (days)

N
e

u
tr

o
p

h
il
 (

D
o
g

 1
1

8
)

-200

-100

0

100

200

0.00 0.01 0.02 0.03 0.04 0.05 0.06

treated (dog 118)

A
n
g

le
(d

e
g

)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.0

0.5

1.0

1.5

2.0

time (days)

N
eu

tr
op

hi
l (

D
og

 1
27

)

-800
-600
-400
-200

0

0.00 0.01 0.02 0.03 0.04 0.05 0.06

untreated (dog 127)

A
ng

le
(d

eg
)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0

1

2

3

4

time (days)

N
eu

tr
op

hi
l (

D
og

 1
27

)

-800
-600
-400
-200

0

0.00 0.01 0.02 0.03 0.04 0.05 0.06

treated (dog 127)

A
ng

le
(d

eg
)



Research Journal of Recent Sciences ______________________________________________________________ ISSN 2277-2502 

Vol. 1(4), 14-21, April (2012)                   Res. J. Recent Sci. 

   

International Science Congress Association  20 

 

 

 

 
We have developed a model of the hematopoietic system that 

includes a pharmacokinetic model of G-CSF dynamics in tissue 

and in circulation. The model is able to account for the features 

of untreated, and G-CSF-treated, data for dogs with cyclical 

neutropenia. This is accomplished, starting with parameter 

fitting done, by fitting parameters for 3 dogs and thereby 

estimating, not fitting, parameters for 4 other dogs. One of the 

most intriguing observations resulting from the parameter fitting 

in this study is that to fit observed data for cyclical neutropenic 

dogs and human patients during G-CSF treatment it was 

necessary to assume that there was an increase in the rate of 

apoptosis in the stem cell compartment during G-CSF treatment, 

at the same time as the more expected increase in neutrophil 

amplification. 
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The study we report here about treatment schedules indicates 

that changing the period of the treatment from daily to every 

other day, and then to every third day, almost always 

significantly alters the nature of the oscillations. Since G-CSF is 

costly and may have undesirable side effects, it may be worth 

exploring this option further in humans. Furthermore, we found 

in one case (Dog 127) that changing the time of onset of 

treatment to the latter half of the cycle (as measured by setting 

day 1 to be the day when the neutrophil level is minimal) results 

in much smaller amplitude oscillations in the treated FFT 

analysis. In the model, both of these interventions had more 

significant effects on the oscillations than did changing the G-

CSF dosage. Indeed, increasing the dosage was not seen to be a 

viable option in our analysis, as it frequently led to the 

termination of the FFT rather than to the stabilization of 

oscillations
11

.
 

 

The observed data are highly variable from one dog to another, 

but the simulations can be individualized to account for this. 

This presents the possibility of using “real time” data for a given 

dog to individualize model analysis and make predictions about 

the effects of different treatment schedules. Earlier modeling 

work also suggested that significantly different behavior would 

result from different G-CSF treatment schedules. Our model 

substantiates this, and quantifies the effects using realistic G-

CSF dynamics and yielding analysis that are directly 

comparable to observed data. Our central result is that in the 

model, changing the time of treatment initiation and or the 

period of treatment may result in equally good, or better, long-

term outcomes and may require less G-CSF. These changes 

would be practical to implement and, if less G-CSF were 

required, would reduce the risk of side effects as well as the cost 

of treatment
12

. 
 

Conclusion 

The model could be used to study different mechanisms of 

granulopoiesis and of G-CSF administration. In particular, we 

assumed G-CSF was acting on both the apoptosis rate and the 

amplification factor in the proliferative phase of neutrophil 

precursors. Since both effects are modeled separately, we could 

study in more detail the precise effects of each factor. As 

mentioned above, clinical data for alternative treatment 

schedules with G-CSF are needed to validate our results and 

make further model improvements. If such data were available, 

the individualized approach presented in the paper could be 

interesting to implement since it fits the model to data before 

and during treatment for a given subject. FFT simulations for 

this subject could then predict the possible outcomes of different 

treatment schemes. In conclusion, hematopoiesis and G-CSF 

effects are not yet fully understood and several aspects are still 

being studied. Clinical findings and future studies will provide 

new insights and help to better understand the system. The 

models presented here would then have to be modified 

accordingly, as this is part of the evolutionary process of 

mathematical modeling. 
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